

1

Library Qualification
From Requirement to Test Specification to Test

If functions from the C standard library are used in a safety-critical application, ISO

26262 requires their verification. For a library that is developed or modified in-house,

ISO 26262-6 Clause 9 applies (which is about verification of application software in

general). If the library is from an external source, the qualification method described in

ISO 26262-8 Clause 12 can be used (for software originally developed in another

project, commercial off-the-shelf software, and even open source).

In either case, ‘requirements-based testing’ is necessary to verify the C standard library

implementation. The tests used must be developed using a combination of techniques:

analysis of the requirements; the use of equivalence classes; the definition of boundary

values; and ‘error guessing’. At Solid Sands we prefer to call the last of these techniques

‘experience’, rather than ‘error guessing’.

The starting point for developing a requirements-based test suite for the C standard

library is the library specification in the ISO C language standard. This specification

describes the behavior of library functions from the perspective of the library user. It

does not simply list the functional requirements. In this document we will discuss how

you get from this user-level behavior document to a set of functional requirements, and

then to a test suite that matches the requirements of ISO 26262 and other safety

standards.

Functional Requirements and Test Specifications

In our test suites, tests are organized according to the ISO standard C library

2 Library Qualification: From Requirement to Test Specification to Test

specification, detailed down to the section level of the specification. To make SuperGuard

a proper requirements-based test suites, we extended it with precise descriptions of all

requirements, as well as test specifications.

For SuperGuard, we analyzed the text of the library specification and turned it into

functional requirements for every library function1. The library specification also

(commonly) defines preconditions – requirements that the developer must fulfill before

calling a specific function. For example, a precondition for calling the strlen() function is

that its argument must point to a valid string. Since this valid string is application

dependent, the precondition cannot be verified by a test for the correct implementation

of the strlen() function. A preconditions is not a functional requirement.

Preconditions are still useful. They often restrict the run-time values of the arguments to

a particular function. For example, the argument to sqrt() must not be negative. This

information is used to define the equivalent classes and boundary values of the

function’s arguments in the tests.

Secondly, we translated the requirements for every function in the library into one or

more test specifications that describe how to test the requirements. Each test

specification is linked to a specific test.

In addition to functional requirements and test specifications, SuperGuard contains a

reporting tool that can be used after completion of a library test run to interpret the test

results and link them back to the library’s functional requirements.

Developing Tests

The ISO C standard is a long and complex document, with precise wording that is not

always easy to read and interpret — even for those with years of experience.

Acknowledging the complexity of the language specification, and the corresponding

complexity of developing an implementation of it, it can be safely said that no

implementation is error-free – a statement that is borne out by Solid Sands’ many years

1 Do not get confused here between the use of functional before requirement, and function as in

library function. They are unrelated. A functional requirement is a testable requirement of
behavior. For a functional requirement one can write a test that passes or fails. There are also
non-functional requirements. For example, one could require that the malloc()/free() family
of functions makes efficient use of heap memory. That is a non-functional requirement
because it is not quantified what efficient means. If that requirement is extended by a specific,
measurable, definition of efficiency, then it can become a functional requirement. The C
standard does not include many non-functional requirements like this. The C standard does
include requirements that are not requirements on the behavior of the implementation, but
requirements on the program that is written in C. For library functions, these requirements
are preconditions that the program must fulfill. In the standard, it is sometimes difficult to
understand if a requirement is a functional requirement or a precondition.

3 Library Qualification: From Requirement to Test Specification to Test

of test experience. All implementations should therefore be thoroughly tested in order

to find bugs. But what should a test look like? Here is a simplified test for a requirement

from C’s library section:

 #include <assert.h>

 #include <stdio.h>

 int main(void){

 switch(BUFSIZ){

 case BUFSIZ:

 assert(1);

 default:

 assert(0);

 }

 return 0;

 }

The C standard requires that the BUFSIZ macro “expands to an integral constant

expression” (C90:7.9.1). The test uses a property of the switch statement to test that

BUFSIZ is indeed an integral constant. Regarding the switch statement, the standard

states that “the expression of each case label shall be an integral constant expression”

(C90:6.6.4.2). If an implementation successfully compiles and executes the above code, it

verifies that our requirement on BUFSIZ is met.

The previous test is a positive test – i.e. a test that must be compiled and executed

successfully. There is also another kind of test, called a negative test, that contains

incorrect code – for example, a constraint violation or a construct that is not allowed by

the standard. The following is an example of a negative test.

 #include <stdlib.h>

 int main(void){

 sizeof(free(NULL));

 return 0;

 }

According to the C standard, the return type of the free() function is void (i.e. “The free()

function returns no value” (C90:7.10.3.2)). Taking into account that the void return type

is an incomplete type (“The void type comprises an empty set of values, it is an incomplete

type that cannot be completed” (C90:6.1.2.5.)), a useful test implementation is to call the

free() function wherever an incomplete type, such as void, is not allowed.

4 Library Qualification: From Requirement to Test Specification to Test

For this we can use a property of the sizeof operator, since “The sizeof operator shall not

be applied to an expression that has [...] an incomplete type [...]” (C90:6.3.3.4).

This test must not be compiled successfully, and the compiler must issue a diagnostic in

order to pass the test. If the compiler produces an executable program from this source

code, there is an error in the implementation.

Unlike these two examples, requirements cannot always be turned into tests, because

sometimes there is insufficient information in the library specification. This happens for

features referred to as implementation defined, for which part of the specification is left

to the implementation. For example, the C specification allows for many different

implementations of the 'locale' feature that are not defined in the C specification. Thus,

for this requirement of the strftime() function: “The conversion specifier B is replaced by

the locale's full month name” (C90:7.12.3.5), it is not possible to create a test based on

the C specification alone.

Library Tests
Although it is the compiler that turns the source code into executable code, the two

previous tests are aimed at testing requirements from the library section of the language

standard (stdio.h and stdlib.h, respectively). The compiler is a tool, but the library is

software that actually ends up in a target device. That is why library testing is so

important and, when talking about safety, why the qualification process for libraries is

more elaborate than for compilers. Here is another example, complete with requirement

and test specification. Let’s say that we extract a requirement (named REQ-C90:7.9.6.1-

evaluate in SuperGuard) from the C standard regarding the number of arguments in the

fprintf() function:

“If the format is exhausted while arguments remain, the excess arguments are evaluated

(as always) …” (C90:7.9.6.1).

How can we create a test to verify this requirement? A possible approach is to open a file

in writing mode, call the fprintf() function to write a string on it, and place a last extra

argument with a side-effect – a post-incremented counter – that has no corresponding

conversion specifier in the format string of the call. In that way, checking the value of the

counter after the call is sufficient to verify that the argument is evaluated. This is the test

code:

Solid Sands B.V. / Amsterdam
5 www.solidsands.nl

 #include <assert.h>

 #include <stdio.h>

 int main(void){

 int count = 0;

 FILE *stream = fopen(“cval01.dat”, ”w”);

 assert(stream != NULL);

 fprintf(stream, “%s”, “Hello”, count++);

 fclose(stream);

 assert(count == 1);

 return 0;

 }

And the explanation of how we built the test is the test specification for this

requirement:

 /* TEST SPEC REQ-C90:7.9.6.1-evaluate

 Create a file for writing and print a string to it

 using the fprintf() function. Place an extra argument

 in the call, which has a side effect: a post-incre-

 mented counter. After the call, verify that the counter

 is modified, even if there is no corresponding conversion

 for it specified in the format string.

 */

You could rightly argue that the evaluation of arguments is a property of the language

more than the specific fprintf() function. However, the requirement is explicitly

mentioned for fprintf(), which is a good reason to verify it in the library test suite. There

is a second reason for verifying this requirement that is based on experience (see ‘error

guessing’ above). The printf() family of functions is often optimized by compilers. If the

format and arguments of these functions are such that they can be simplified (as is the

case above), compilers often replace the call with a simpler form. In these printf()

inspired optimizations, the requirement must still be met.

In Summary

Considering the complexity of the C language specification and the importance of its

correct implementation, standard library implementations cannot be taken for granted.

The best way to verify that your library is implemented correctly is to qualify it with a

test suite that includes both the requirements extracted from the standard and test

specifications that fulfill those requirements.

(c) Copyright 2022 by Solid Sands B.V., Amsterdam, The Netherlands
SuperTest™ and SuperGuard™ are trademarks of Solid Sands B.V., Amsterdam, The Netherlands

